
1

1/16/2008 Third Time’s The Charm 1

Third Time’s The Charm:

Designing & Building RDLC3

http://eecs.berkeley.edu/~gdgib/

Greg Gibeling (gdgib@berkeley.edu)

Advisor: John Wawrzynek

1/16/2008

1/16/2008 Third Time’s The Charm 2

Quick Introduction to RDL

� The “RAMP Description Language” (RDL)
� Hierarchical structural netlisting langauge

� Describes message passing distributed event simulations

� System level: contains no behavioral spec.

� Tradeoffs
� Costs

� Use of the RDF Target Model (sort of)

� Area, time and power to implement this model

� Benefits
� Abstraction of locality & timing of communications

� System debugging & power tools

� Determinism, sharing and research

� Goal: trade costs for benefits as needed

1/16/2008 Third Time’s The Charm 3

RAMP Architecture

� RAMP Design Framework (RDF)
� Restrictions on how systems are built

� Not to be confused with RDL

� Target
� The system being emulated

� Must conform to the target model

� Emulation, not implementation

� Host
� The system hosting the emulation

� May include multiple platforms
� Hardware – BEE3, BEE2, XUP, ML500, CaLinx2+, S3, DE2

� Emulation – Matlab, ModelSim

� Software – C/C++, Java

1/16/2008 Third Time’s The Charm 4

RDF Target Model (1)

� Units

� RDF: 10,000+ Gates

� Processor + L1

� Router/Switch

� Implemented in a “host”

language

� Channels

� Unidirectional

� Point-to-point

� FIFO semantics

� Delay Model

1/16/2008 Third Time’s The Charm 5

RDF Target Model (2)

� Inside edge

� Ports connect units to 

channels

� FIFO/SR signaling

� Hardware or Software

� Target cycle control

� __Start & __Done

� __Enable

� Can vary from unit to 

unit

� Host Level Time 

Sharing

_
_
S
ta
rt

_
_
D
o
n
e

C
o
n
tro

l &
 S

ta
tu
s

1/16/2008 Third Time’s The Charm 6

RDF Target Model (3)

� Channel Params
� Only used for timing 

accurate simulations

� Bitwidth (CBFC/SR/Wire)

� Latency
� FW & BW (CBFC)

� FW (SR)

� Buffering (CBFC)

� Fragments
� Smaller than messages

� Indivisible message piece, 
which can be carried by a 
channel

� May never exist in 
implementation

R
e
g
is
te
r

R
e
g
is
te
r

R
e
g
is
te
r

B
it
w
id
th



2

1/16/2008 Third Time’s The Charm 7

RDF Target Model (4)

� Simple CBFC Example

� Channel parameters <8, 2, 1, 3>

� A single 8bit Message

1/16/2008 Third Time’s The Charm 8

RDF Target Model (5)

1/16/2008 Third Time’s The Charm 9

RDF Target Model (6)

� Busses
� A result of I/O pin & board limitations

� Not used in new designs (HyperTransport, PCIe, AMBA AHX)

� Not implementable on FPGAs

� Conclusion
� Busses do not scale & are not distributed

� The target model adds research and design value

� Adapt busses in the short term, avoiding busses by design in the long term

� 0 latency, 0 buffering channels (Wires)
� Does not fit RDF, RDL allows it

� Requires additional assumptions for cross-platform support or debugging 
tools

� Possible severe performance reduction

� System as a unit

� Unit as a system

1/16/2008 Third Time’s The Charm 10

RDF Target Model (7)

� RDF: Non-universal Model
� Lossy channels, multicast networks and busses 

modeled as units

� No global reset

� Emulation & abstraction are not free
� Time, area and power are all spent

� Particularly noticeable for DSP or control-free 
systems

� Existing Systems
� Can be used as a single unit

� May be split, but this will require design changes

1/16/2008 Third Time’s The Charm 11

RDF & RDL

� RDF
� The RAMP Design Framework

� Requires latency insensitivity

� System composition

� Distributed development

� Performance based research

� RDL
� The RAMP Description Language

� More general, easier to implement

� Support for CBFC/SR/Wire channels

� Support for 0-latency, 0-delay

� Fixed latency designs (e.g. DSP perhaps)

1/16/2008 Third Time’s The Charm 12

RDF/RDL & HASIM

� Identical Base Models
� Based on dataflow semantics

� RDL SR Channel = HASIM A-Port

� Effectively distributed event simulators

� Differences
� Generalization & Sharing

� RDL Supports multiple languages

� RDL Designed to cover software & hardware

� RDL Includes CBFC, SR and Wire channels (A-Port = SR)

� HASIM Published (Soon)

� Scaling
� RDL designed for multiple FPGAs & boards

� Automatic mapping & resource abstraction

� Conclusions
� HASIM is more focused, RDL is very general

� RDLC3 should “play well” with HASIM



3

1/16/2008 Third Time’s The Charm 13

2007 (1) – RDLC2

� RAMP Blue in RDLC2 (Beta)
� By Alex Krasnov, Jue Sun & Greg Gibeling

� Main Issues
� Xilinx MicroBlaze

� EDK Integration with RDL

� RDLC2 2007.8.13
� Mostly minor changes (a few bugs, a few scaling issues)

� Added some significant features (ResetParam & Arrays, Regexs)

� Board Level Links
� BEE2 Support/Interchip Link

� Apparently been working quite well since ISCA/FCRC

� BEE2 TestBed
� Developed by Tracy Wang

� Tested the interchip link

� Will shift to BEE3 very soon

� Basis of automated link reliability testing

1/16/2008 Third Time’s The Charm 14

2007 (2) – RDLC3

� Automated Mapping
� Complete the theoretical work

� NP complete problem

� Similar to PAR in FPGAs, but at a higher level

� Currently unpublished, waiting on implementation

� Framework Code for RDLC3
� Any sufficiently large software project needs it's own libraries

� Avoid the issues that plagued RDLC2 at an algorithmic level
� Parameters, multi-board support, more complex links

� RDLC2’s internal design is very brittle and complex

� RDLC3’s internal design is general & flexible

� Finally winding down

� Greg's Brain Scattered
� Too many little projects

� Teaching CS61C absorbed fall semester

� Finished RDLC3 Architecture

1/16/2008 Third Time’s The Charm 15

2008

� RDLC3 Released
� New compiler core (parameterization, cross-platform support)

� Support for complete channel timing model

� Automated Mapping

� Better platform abstraction (virtualization & multiplexing of resources)

� RADTools Released
� FPGA/Computer System "Loader"

� Integrates for monitoring & debugging

� BEE3 Support Package (for RDLC3 & RADTools)
� Abstraction of resources

� Links: InterChip, Ethernet, XAUI

� Memory

� Loading & debugging support

� Example Projects
� CounterExample

� Simple RISC processor

� Network Router w/Timing Model

� EECS150: General Media Project

1/16/2008 Third Time’s The Charm 16

Design Sharing

� Design Sharing Goals
� Share individual models

� Share libraries, back-ends, links, etc…

� Allow for independent validation

� Solution
� Switch to an RDL unit as a packaging unit

� Similar to PCores or Java classes

� Protection

� Namespace Isolation

� Attached scripts & implementation files

� Integrated repository access
� Could have RDLC3 access an HTTP, CVS or SVN 

repository

1/16/2008 Third Time’s The Charm 17

RDLC3 Architecture

� RDLC3 Core
� Lex, Parse, Parameterization, Mapping, Output Selection

� Allows plugins to significantly modify build process
� Hardware generators

� Regex replacement

� Compiling software for processor units

� Dataflow Style
� Integrates with RADTools for distributed build (standard build environments)

� Allows multi-threading

1/16/2008 Third Time’s The Charm 18

Virtualization & Sharing

� Units
� One unit implementation supports multiple units

� Wrapper interface plugins

� Not just start/done

� Multiple unit implementation timing interfaces

� Pipelining of target cycles

� Time sharing of unit implementation

� Enhanced functional/timing split

� Links
� One link supports multiple channels

� Host level: simple message multiplexing

� Target level: enable unit implementation sharing



4

1/16/2008 Third Time’s The Charm 19

RDL MetaProgramming

� RDL in RDL
� Shared development of host 

& target networks

� Simplifies Compiler!
� Target & Host are similar

� Recursive debugging

� Zero-Delay Links

� Generating RDL
� Inline Scripting

� Limited to mathematical 
expressions at first

� Could be generalized

� Java Plugins
� RDL Reflection Interfaces

� Already done in FLEET

� Adding better support

1/16/2008 Third Time’s The Charm 20

Debugging & Parameterization

� Untimed Channels
� Untimed – No timing model

� Optional – Needn’t be used

� Point of interaction between 
target & host

� Plugin defined protocols
� Memory Mapped

� Raw bits (GPIO)

� Extensions to the RDL type 
system (Java objects or bits)

� Debugging
� Can use host-level network or 

dedicated links

� RADTools & R2

� Parameterization
� Not all known until load time

� MAC Address, Speed, etc…

� Important for design minimization

1/16/2008 Third Time’s The Charm 21

RADTools

� Abstract Management
� Loading

� FPGA Programming

� Load time parameterization

� Debugging, Tracing & Monitoring

� Uniform Interface

� Research resource sharing

� Structures
� Composition (Hierarchy)

� Dependency (Platforms)

� Management (Infrastructure)

� Communication

� Framework
� Based on service specific plugins

� Integrated with RDLC3

� Not restricted to RDL designs

� Failure management

� Class project with Nathan 
Burkhart & Lilia Gutnik

1/16/2008 Third Time’s The Charm 22

R2 – Debugging & Monitoring

� Active Debugging
� Datalog style declarative 

event language

� Allows integrated monitoring 
& injection

� Simple to specify & modify

� Can support dynamic 
changes in debug rules

� The P2 Project
� Used a language (overlog) to 

build P2P networks

� Previously adapted to RDLC2
� Ran on BEE2

� Class project with Andrew 
Schultz & Nathan Burkhart

� Will need rewrite

1/16/2008 Third Time’s The Charm 23

Automated Mapping (1)

� Mapping
� Units to platforms

� Channels to links

� Graph Embedding
� Minimize cost in compile 

time, run time and 
resources

� Many requirements

� Largely mechanical (easy) 
for a “good” design

� Hierarchical Analysis
� Heuristic based

� Reduces problem size

� History of hierarchical 
partitioning papers

1/16/2008 Third Time’s The Charm 24

Automated Mapping (2)

� Differences: PAR/CAD
� Performance is flexible

� Scale is vastly different

� Channels are heavy-
weight

� Requires fast turn-around

� Requires design 
minimization (30 Hour 
PAR)

� NP Complete
� Currently have an IP 

formulation

� Simplex solver (for now)

� Needs testing



5

1/16/2008 Third Time’s The Charm 25

RDLC3 Promises

� Promises
� RDLC3 Examples (ASPLOS/June): MIPS, Router, Base Examples

� Full timing models (June)

� Multi-FPGA platform support (ASPLOS)

� RADTools (ASPLOS/June)

� Platforms: BEE3 (ASPLOS/June), ModelSim (ASPLOS)

� Links: Ethernet (June), InterChip, XAUI (June)

� Languages: Verilog (ASPLOS) & Java (June)

� Support, Documentation & Development Help

� Hopes
� Platforms: CaLinx2+, S3, DE2, XUP, BEE2

� Links: Serial, TCP/IP

� Languages: VHDL, BlueSpec, C/C++

� Letdowns (I Call Not-It)
� Integration: EDK, Eclipse, etc...

� Host level networking & memory controllers (I’ll need these though)

� A complete RAMP system (too ambitious)

1/16/2008 Third Time’s The Charm 26

RAMP: A Team Project (1)

� Criticisms of RAMP
� Definition of Terms

� RAMP: Project, System…

� Long-term vision

� Cooperation & integration

� Simple Suggestions
� The Many Meanings of 

RAMP

� The Website
� Planning – Let the world 

know what we intend to do!

� People – Who is everyone?

� Central/Shared CVS or SVN 
Access

� Lets get the ball rolling…
BEE3, BEE2, XUP, 

ML500, DE2, 

CaLinx2+, S3 PCs & Clusters

ModelSim Java, Windows, Linux, Solaris

MatLab, High 

Level Sims
Java, C/C++Verilog, VHDL, BlueSpec

Processors, Routers, FIFOs

Interchip, XAUI Memory, DDR2, BlockRAM, Ethernet, Serial

Atomic Messages, Flow 

Control

RDF

Custom None

None

Control Network

Debugging, Loading, Power 

Monitoring, Tracing, R2
??

Space & Time Multiplexing, Time Dilation

Functional/Timing Split

PowerPC, MicroBlaze, Leon, Sparc, Parameterized ISAs, Routers, 

Transactional Memory, DDR2, Disk, Memory Hierarchy, Etc...

RAMP RedRAMP Blue RAMP Purple RAMP WhiteRAMP Gold

NAS Misc Benchmarks & Applications

ParLab

(OS, Efficiency, 

Productivity, 

Dwarfs)

Applications

Systems

Models

Abstraction 

Features

Abstractions

Mechanisms

Library 

Components

Languages

Platforms

RDL
HASIM

1/16/2008 Third Time’s The Charm 27

RAMP: A Team Project (2)

� Recruiting
� Who wants to use RDL?

� I certainly do…

� Anyone interested in helping to develop RDLC3?
� Got some Berkeley undergrads

� Discussion of RDL & Features
� Missing features?

� In particular, ones which haven’t been mentioned

� Design concerns?
� Does the model match what you want?

� “Never ignore the possibility that you may be completely wrong”

� Projects which could be examples?
� I’ll help/do-the-work to put them into RDL

� Be a man: share your work with the RAMP project!


