

Third Time's The Charm: Designing & Building RDLC3

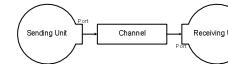
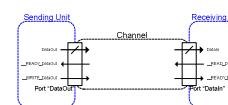
<http://eecs.berkeley.edu/~gdgib/>
 Greg Gabeling (gdgib@berkeley.edu)
 Advisor: John Wawrzynek
 1/16/2008

1/16/2008 Third Time's The Charm 1

Quick Introduction to RDL

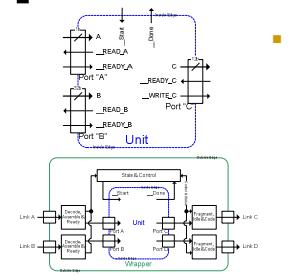
- The "RAMP Description Language" (RDL)
 - Hierarchical structural netlisting language
 - Describes message passing distributed event simulations
 - System level: contains no behavioral spec.
- Tradeoffs
 - Costs
 - Use of the RDF Target Model (sort of)
 - Area, time and power to implement this model
 - Benefits
 - Abstraction of locality & timing of communications
 - System debugging & power tools
 - Determinism, sharing and research
 - Goal: trade costs for benefits as needed

1/16/2008 Third Time's The Charm 2



RAMP Architecture

- RAMP Design Framework (RDF)
 - Restrictions on how systems are built
 - Not to be confused with RDL
- Target
 - The system being emulated
 - Must conform to the target model
 - Emulation, not implementation*
- Host
 - The system hosting the emulation
 - May include multiple platforms
 - Hardware – BEE3, BEE2, XUP, ML500, CaLinx2+, S3, DE2
 - Emulation – Matlab, ModelSim
 - Software – C/C++, Java

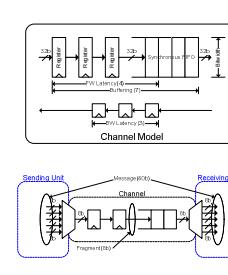
1/16/2008 Third Time's The Charm 3


RDF Target Model (1)

- Units
 - RDF: 10,000+ Gates
 - Processor + L1
 - Router/Switch
 - Implemented in a "host" language
- Channels
 - Unidirectional
 - Point-to-point
 - FIFO semantics
 - Delay Model

1/16/2008 Third Time's The Charm 4

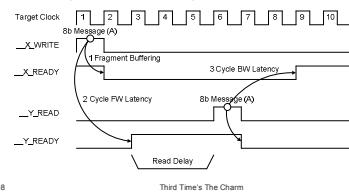
RDF Target Model (2)



- Inside edge
 - Ports connect units to channels
 - FIFO/SR signaling
 - Hardware or Software
 - Target cycle control
 - Start & Done
 - Enable
 - Can vary from unit to unit
 - Host Level Time Sharing

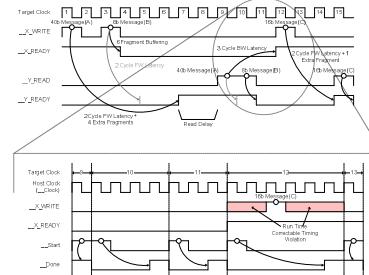
1/16/2008 Third Time's The Charm 5

RDF Target Model (3)


- Channel Params
 - Only used for timing accurate simulations
 - Bitwidth (CBFC/SR/Wire)
 - Latency
 - FW & BW (CBFC)
 - FW (SR)
 - Buffering (CBFC)
- Fragments
 - Smaller than messages
 - Indivisible message piece, which can be carried by a channel
 - May never exist in implementation

1/16/2008 Third Time's The Charm 6

RDF Target Model (4)


- Simple CBFC Example
 - Channel parameters <8, 2, 1, 3>
 - A single 8bit Message

1/16/2008

7

RDF Target Model (5)

1/16/2008

Third Time's The Charm

8

RDF Target Model (6)

- Busses
 - A result of I/O pin & board limitations
 - Not used in new designs (HyperTransport, PCIe, AMBA AHX)
 - Not implementable on FPGAs
 - Conclusion
 - Busses do not scale & are not distributed
 - The target model adds research and design value
 - Adapt busses in the short term, avoiding busses by design in the long term
- 0 latency, 0 buffering channels (Wires)
 - Does not fit RDF, RDL allows it
 - Requires additional assumptions for cross-platform support or debugging tools
 - Possible severe performance reduction*
- System as a unit
- Unit as a system

1/16/2008

Third Time's The Charm

9

RDF Target Model (7)

- RDF: Non-universal Model
 - Lossy channels, multicast networks and busses modeled as units
 - No global reset
- Emulation & abstraction are not free
 - Time, area and power are all spent
 - Particularly noticeable for DSP or control-free systems
- Existing Systems
 - Can be used as a single unit
 - May be split, but this will require design changes

1/16/2008

Third Time's The Charm

10

RDF & RDL

- RDF
 - The RAMP Design Framework
 - Requires latency insensitivity
 - System composition
 - Distributed development
 - Performance based research
- RDL
 - The RAMP Description Language
 - More general, easier to implement
 - Support for CBFC/SR/Wire channels
 - Support for 0-latency, 0-delay
 - Fixed latency designs (e.g. DSP perhaps)

1/16/2008

Third Time's The Charm

11

RDF/RDL & HASIM

- Identical Base Models
 - Based on dataflow semantics
 - RDL SR Channel = HASIM A-Port
 - Effectively distributed event simulators
- Differences
 - Generalization & Sharing
 - RDL Supports multiple languages
 - RDL Designed to cover software & hardware
 - RDL Includes CBFC, SR and Wire channels (A-Port = SR)
 - HASIM Published (Soon)
 - Scaling
 - RDL designed for multiple FPGAs & boards
 - Automatic mapping & resource abstraction
- Conclusions
 - HASIM is more focused, RDL is very general
 - RDL3 should "play well" with HASIM

1/16/2008

Third Time's The Charm

12

2007 (1) – RDLC2

- **RAMP Blue in RDLC2 (Beta)**
 - By Alex Krasnov, Jue Sun & Greg Gibling
 - Main Issues
 - Xilinx MicroBlaze
 - EDK Integration with RDL
 - RDLC2 2007.8.13
 - Mostly minor changes (a few bugs, a few scaling issues)
 - Added some significant features (ResetParam & Arrays, Regexes)
- **Board Level Links**
 - BEE2 Support/Interchip Link
 - Apparently been working quite well since ISCA/FCRC
 - BEE2 TestBed
 - Developed by Tracy Wang
 - Tested the interchip link
 - Will shift to BEE3 very soon
 - Basis of automated link reliability testing

1/16/2008

Third Time's The Charm

13

2007 (2) – RDLC3

- **Automated Mapping**
 - Complete the theoretical work
 - NP complete problem
 - Similar to PAR in FPGAs, but at a higher level
 - Currently unpublished, waiting on implementation
- **Framework Code for RDLC3**
 - Any sufficiently large software project needs its own libraries
 - Avoid the issues that plagued RDLC2 at an algorithmic level
 - Parameters, multi-board support, more complex links
 - RDLC2's internal design is very brittle and complex
 - RDLC3's internal design is general & flexible
 - Finally winding down
- **Greg's Brain Scattered**
 - Too many little projects
 - Teaching CS61C absorbed fall semester
- **Finished RDLC3 Architecture**

1/16/2008

Third Time's The Charm

14

2008

- **RDLC3 Released**
 - New compiler core (parameterization, cross-platform support)
 - Support for complete channel timing model
 - Automated Mapping
 - Better platform abstraction (virtualization & multiplexing of resources)
- **RADTools Released**
 - FPGA/Computer System "Loader"
 - Integrates for monitoring & debugging
- **BEE3 Support Package (for RDLC3 & RADTools)**
 - Abstraction of resources
 - Links: InterChip, Ethernet, XAUI
 - Memory
 - Loading & debugging support
- **Example Projects**
 - CounterExample
 - Simple RISC processor
 - Network Router w/Timing Model
 - ECES150: General Media Project

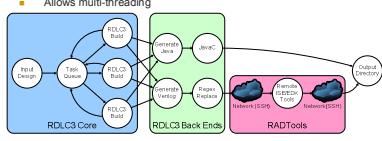
1/16/2008

Third Time's The Charm

15

Design Sharing

- **Design Sharing Goals**
 - Share individual models
 - Share libraries, back-ends, links, etc...
 - Allow for independent validation
- **Solution**
 - Switch to an RDL unit as a packaging unit
 - Similar to Pcores or Java classes
 - Protection
 - Namespace Isolation
 - Attached scripts & implementation files
 - Integrated repository access
 - Could have RDLC3 access an HTTP, CVS or SVN repository


1/16/2008

Third Time's The Charm

16

RDLC3 Architecture

- **RDLC3 Core**
 - Lex, Parse, Parameterization, Mapping, Output Selection
 - Allows plugins to significantly modify build process
 - Hardware generators
 - Regex replacement
 - Compiling software for processor units
 - Dataflow Style
 - Integrates with RADTools for distributed build (standard build environments)
 - Allows multi-threading

1/16/2008

Third Time's The Charm

17

Virtualization & Sharing

- **Units**
 - One unit implementation supports multiple units
 - Wrapper interface plugins
 - Not just start/stop
 - Multiple unit implementation timing interfaces
 - Pipelining of target cycles
 - Time sharing of unit implementation
 - Enhanced functional/timing split
- **Links**
 - One link supports multiple channels
 - Host level: simple message multiplexing
 - Target level: enable unit implementation sharing

1/16/2008

Third Time's The Charm

18

RDL MetaProgramming

- RDL in RDL
 - Shared development of host & target networks
 - **Simplifies Compiler!**
 - Target & Host are similar
 - Recursive debugging
 - Zero-Delay Links
- Generating RDL
 - Inline Scripting
 - Limited to mathematical expressions at first
 - Could be generalized
 - Java Plugins
 - RDL Reflection Interfaces
 - Already done in FLEET
 - Adding better support

1/16/2008 Third Time's The Charm 19

Debugging & Parameterization

- Untimed Channels
 - Untimed – No timing model
 - Optional – Needn't be used
 - Point of interaction between target & host
- Plugin defined protocols
 - Memory Map (DMA)
 - Raw bits (GPIO)
 - Extensions to the RDL type system (Java objects or bits)
- Debugging
 - Can use host-level network or dedicated links
 - RADTools & R2
- Parameterization
 - Not all known until load time
 - MAC Address, Speed, etc...
 - Important for design minimization

1/16/2008 Third Time's The Charm 20

RADTools

1/16/2008 Third Time's The Charm 21

R2 – Debugging & Monitoring

- Active Debugging
 - Datalog style declarative event language
 - Allows integrated monitoring & injection
 - Simple to specify & modify
 - Can support dynamic changes in debug rules
- The P2 Project
 - Used a language (overlog) to build P2P networks
 - Previously adapted to RDL2
 - Ran on BEE2
 - Class project with Andrew Schulz & Nathan Burkhardt
 - Will need rewrite

1/16/2008 Third Time's The Charm 22

Automated Mapping (1)

- Mapping
 - Units to platforms
 - Channels to links
- Graph Embedding
 - Minimize cost in compile time, run time and resources
 - Many requirements
 - Largely mechanical (easy) for a "good" design
- Hierarchical Analysis
 - Heuristic based
 - Reduces problem size
 - History of hierarchical partitioning papers

1/16/2008 Third Time's The Charm 23

Automated Mapping (2)

- Differences: PAR/CAD
 - Performance is flexible
 - Scale is vastly different
 - Channels are heavy-weight
 - Requires fast turn-around
 - Requires design minimization (30 Hour PAR)
- NP Complete
 - Currently have an IP formulation
 - Simplex solver (for now)
 - Needs testing

1/16/2008 Third Time's The Charm 24

RDLC3 Promises

- Promises
 - RDLC3 Examples (ASPLOS/June): MIPS, Router, Base Examples
 - Full timing models (June)
 - Multi-FPGA platform support (ASPLOS)
 - RADTools (ASPLOS/June)
 - Platforms: BEE3 (ASPLOS/June), ModelSim (ASPLOS)
 - Links: Ethernet (June), InterChip, XAUI (June)
 - Languages: Verilog (ASPLOS) & Java (June)
 - Support, Documentation & Development Help
- Hopes
 - Platforms: CalIn2+, S3, DE2, XUP, BEE2
 - Links: Serial, TCP/IP
 - Languages: VHDL, BlueSpec, C/C++
- Letdowns (I Call Not-It)
 - Integration: EDK, Eclipse, etc...
 - Host level networking & memory controllers (I'll need these though)
 - A complete RAMP system (too ambitious)

1/16/2008

Third Time's The Charm

25

RAMP: A Team Project (1)

- Criticisms of RAMP
 - Definition of Terms
 - RAMP: Project, System...
 - Long-term vision
 - Cooperation & integration
- Simple Suggestions
 - The Many Meanings of RAMP
 - The Website
 - Planning – Let the world know what we intend to do!
 - People – Who is everyone?
 - Central/Shared CVS or SVN Access
 - Lets get the ball rolling...

1/16/2008

Third Time's The Charm

26

RAMP: A Team Project (2)

- Recruiting
 - Who wants to use RDL?
 - I certainly do...
 - Anyone interested in helping to develop RDLC3?
 - Got some Berkeley undergrads
- Discussion of RDL & Features
 - Missing features?
 - In particular, ones which haven't been mentioned
 - Design concerns?
 - Does the model match what you want?
 - "Never ignore the possibility that you may be completely wrong"
 - Projects which could be examples?
 - I'll help/do-the-work to put them into RDL
 - Be a man: share your work with the RAMP project!

1/16/2008

Third Time's The Charm

27